Name :

HURLSTONE AGRICULTURAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE

1998

MATHEMATICS 3/4 UNIT (COMMON)

Time Allowed - Two hours
(Plus reading time -5 minutes)

Examiner -H. Cavanagh.

DIRECTIONS TO CANDIDATES

- This paper contains 8 questions.
- All questions are to be attempted.
- All necessary working should be shown. Marks may not be awarded for careless or badly arranged work.
- Start each question on a new sheet of paper. Ensure that your name is written on each sheet of paper that is submitted.
- Board approved calculators and approved Math-Aids may be used.
- A table of Standard Integrals is supplied for use in the examination.

QUESTION ONE (11 marks) (Start a new sheet of paper)

Ma.

- (a) Write $\frac{1+\sqrt{7}}{3-\sqrt{7}}$ in the form $a+b\sqrt{7}$ where a and b are rational.
- (b) Given $f(x) = \tan^2 x$, find $f'(\frac{\pi}{4})$.
- AB in the ratio 2:3. Find the coordinates of P.
- (d) Solve for $x: \frac{6}{x} > x 1$
- (e) (i) Sketch the graph of y = |x 2|
 - ii) For what values of x is |x-2| < x

QUESTION TWO (12 marks) (Start a new sheet of paper)

- (a) Differentiate $e^{4x}\sin x$.
- (b) Use the substitution $u = \log_e x$ to evaluate $\int_{-\infty}^{\epsilon} \frac{(\log_e x)}{x} dx$
- (c) Solve the equation $\sin 2x = \tan x$ for $0 \le x \le \pi$.
 - Evaluate $\int_{0}^{\sqrt{2}} \frac{dx}{\sqrt{4-2x^2}}$

(a) (i) Find the domain and range of the function $y = 4\cos^{-1}\frac{x}{3}$

- 5
- (ii) Sketch the graph of the function $y = 4\cos\frac{1}{3}$ showing clearly the intercepts on the coordinate axes and the coordinates of any endpoints.
- (iii) Find the area of the region in the first quadrant bounded by the curve $y = 4\cos^{-1}\frac{x}{3}$ and the coordinate axes.
- (b) In the diagram below, AB is a diameter of a circle, centre O. The chord XY intersects AB at M, such that OM = BM.

- (i) Copy, or trace, the diagram carefully onto your exam paper.
- (ii) Show that ΔΑΧΜ III ΔΥΒΜ.
- (iii) If XM = 8 cms and YM = 6 cms, find the radius of the circle.

Please turn over to Question Four.....

- (a) Using the principles of Mathematical Induction, show that $3^{3n} + 2^{n+2}$ is divisible by 5 for all positive integers n greater than or equal to 1.
- (b) Newton's Law of Cooling states that when an object at temperature T' C is placed in an environment at temperature T_0 °C, the rate of temperature loss is given by the equation $\frac{dT}{dt} = k(T T_0)$ where t is the time in seconds and k is a constant.
 - (i) Show that $T = T_0 + Ae^{kt}$ is a solution to the equation above.
 - (ii) A packet of peas, initially at 24° C is placed in a snap-freeze refrigerator in which the internal temperature is maintained at -40°C. After 5 seconds, the temperature of the peas is 19° C. How long will it take for the peas to reach a temperature of 0° C?

QUESTION FIVE (12 marks) (Start a new sheet of paper)

- (a) (i) Express $2\sin\theta + \cos\theta$ in the form $r\sin(\theta + \alpha)$.
 - ii) Hence, or otherwise, solve $2\sin\theta + \cos\theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- (b) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$.
 - If PQ passes through the point C(2a, 3a) show that pq = p + q 3.
 - (ii) If M is the midpoint of PQ, show that the coordinates of M are $(a(pq + 3), \frac{a}{2}(pq + 3)^2 apq)$.
 - (iii) Hence show that the locus of the midpoint of all chords passing through (2a, 3a) is $x^2 2ax = 2a(y 3a)$.

- (a) In a group X, there are 7 boys and 3 girls, whilst in another group Y, there are 2 boys and 8 girls.
 - (i) One person is selected at random from each group. Find the probability that
 - (α) both are boys.
- (β) one is a boy and one is a girl.
- (ii) One group is chosen at random from X and Y and then two people are selected from this group. Find the probability that
 - (α) both are boys.
- (β) one is a boy and one is a girl.
- (b) In $\triangle XYZ$, ZX = y, $\angle YZX = 90^{\circ}$ and $\angle YXZ = \theta$.

Y P X

- (i) Show that the perimeter P of the triangle is given by $P = y(1 + \tan\theta + \sec\theta)$.
- (ii) If y = 10 cm and θ is increasing at a constant rate of 0.2 radians / sec find the rate at which the perimeter of the triangle is increasing when $\theta = \frac{\pi}{6}$ radians.

Heavy raindrops are moving horizontally at 36 km/hr in clouds being blown

QUESTION SEVEN (10 marks) (Start a new sheet of paper)

by a steady wind. They then fall 200 metres to the ground below. (Air resistance may be neglected, and the approximate value $g = 10 \text{ m/sec}^2$ may be assumed.)

- (i) Find the time taken for a drop to reach the ground.
- (ii) Find the speed and angle at which a drop hits the horizontal ground.
- (iii) At what angle does a drop hit the ground when the wind speed is doubled?

Mark

(a) The acceleration of a particle, when x metres from the origin on a directed axis, is $(4x - 2x^3)$ ms⁻².

It is released from rest at x = 2.

- (i) Determine v^2 as a function of x, where v ms⁻¹ is the velocity.
- (ii) Determine (α) the position at which it next comes to rest,
 - (β) and its acceleration at that point.

(b) The graph of $f(x) = e^{2x} - 5e^x + 4$ is shown below

- (i) Write the equation of the horizontal asymptote through C.
- (ii) Find the coordinates of A, the point where y = f(x) crosses the x-axis, and B, a stationary point. Leave your answers in exact form.
- (iii) Find the equation of the normal through (0,0).
- (iv) The normal intersects the curve at another point, N. The x coordinate of N is close to 1.5. Use one application of Newton's Method to find the value of N and round answer correct to three decimal places.

End of Paper.

(b)
$$f(x) = tan^{2}x$$

 $f'(x) = 2 tanx. sec^{2}x$
 $f'(\frac{\pi}{4}) = 2 tan \frac{\pi}{4}. sec^{2} \frac{\pi}{4}$
 $= 2(1)(\sqrt{2})^{2}$

2

$$(x x^{2})$$
 $6x > x^{3} - x^{2}$
 $x^{3} - x^{2} - 6x < 0$
 $x(x^{2} - x - 6) < 0$

x(x-3)(x+2) < 0 x = x(-20 - 0 < x < 3)

(b)
$$I = \int_{1}^{e} \frac{\log_{e} x}{x} dx$$

let $u = \log_{e} x$ when $x = e$, $u = 1$
when $x = 1$, $u = 0$

$$I = \int_0^1 u \, du$$

$$= \left[\frac{u^2}{2} \right]_0^1$$

$$= \frac{1}{2}$$

2 mix cox x = mix · sin x (2 co 2 x -1) = 0 or 200 x-1=0

$$\chi = 0, T$$
 $\chi = 0, T$
 $\chi = T$
 $\chi =$

$$P: \left\{ \frac{-3 \leq x \leq 3}{0 \leq y \leq 4\pi} \right\}$$

$$(ii) = 2x$$

$$\frac{x}{8} = \frac{6}{x+r}$$

$$x(x+r) = 48$$

 $x^{2} + x(2x) = 48$
 $3x^{2} = 48$
 $x^{2} = 16$
 $x = 4(x>0)$

$$3 \leftarrow 3_{4}$$

$$x \leq 3$$

Test for n=1,

$$3^3 + 2^3 = 27 + 8$$

= 35
True for n=1 (35 = 5×7)

Assume true for
$$n=k$$

 $i.e.3^{3k}+2^{k+2}=5M$ (MEJ)

Consider
$$3^{3(k+1)} + 2^{(k+1)+2} = 3 \cdot 3^{k} + 2^{k+3}$$

 $= 3^{3} (5M - 2^{k+2}) + 2^{k+3}$
(since $3^{3k} = 5M - 2^{k+2}$)
 $= 27 \cdot 5M - 27 \cdot 2^{k+2} + 2^{k+3}$
 $= 27 \cdot 5M - 25 \cdot 2^{k+2}$
 $= 5(27M - 5 \cdot 2^{k+2})$
 $= 5P$ $P \in J$

Hence, if true for n=k, result holds true for n=k+1.

Since true for n=1, it is true for n=1+1=2. Since true for n=2, it is true for n=2+1=3. By principle of mathematical induction, result is true for all positive integral values of n.

$$\begin{array}{ll} (4)(b)(i) & \underline{\alpha T} = k(T-T_{\bullet}) \\ & \underline{at} = T_{\bullet} + A_{\bullet}^{kt} \\ & \underline{n_{\bullet \bullet}} \ \underline{at} = A_{\bullet} e^{kt} \\ & \underline{at} = k(A_{\bullet}^{kt}) \\ & \underline{=k(T-T_{\bullet})} \quad \underline{o.e.p.} \end{array}$$

when
$$t = 5$$
, $T = 19$
 $19 = -40 + 64e^{5k}$
 $59 = 64e^{5k}$
 $e^{k} = \frac{59}{64}$
 $k = \frac{1}{5} \log \frac{59}{64}$ $\left[k = -0.0/62691\right]$

(S) (Q(1) 2 sin
$$\theta$$
 + coo θ = $\sqrt{5}\left(\frac{2}{\sqrt{5}}\sin\theta + \frac{1}{\sqrt{5}}\cos\theta\right)$
= $\sqrt{5}\left(\sin\theta + \left(\frac{2}{\sqrt{5}}\right) + \cos\theta\left(\frac{1}{\sqrt{5}}\right)\right)$
= $\sqrt{5}\sin\left(\theta + \lambda\right)$ where $\cos\alpha = \frac{2}{\sqrt{5}}$
 $\sin\alpha = \frac{1}{\sqrt{5}}$
 $i.e.$ $\alpha = 26^{\circ}34^{\circ}$

(ii) .. 20i 0 1 600 = 1 for 0'
$$\leq e \leq 360^{\circ}$$
 $\sqrt{5} \sin (\theta + 26^{\circ}34') = 1$ for $26^{\circ}34' \leq 386^{\circ}34'$
 $\sin (e + 26^{\circ}34') = \frac{1}{\sqrt{5}}$
 $\sin (e + 26^{\circ}34') = \frac{1}{\sqrt{5}}$

or (ii) 2000 0 + coo 0 = 1

Manig sin 0 =
$$\frac{2t}{1+t^2}$$
 and $\cos 0 = \frac{1-t^2}{1+t^2}$ unduet = $\tan 0$,

$$\frac{4t}{1+t^2} + \frac{1-t^2}{1+t^2} = 1$$

$$4t + 1-t^2 = 1+t^2$$

$$2t' - 4t = 0$$

$$2t(t-a) = 0$$

aire tan
$$\frac{6}{2} = 0$$
 tan $\frac{6}{2} = 2$

$$\frac{6}{2} = 0^{\circ}, 180^{\circ} \qquad \frac{6}{2} = 126^{\circ}52^{\circ}$$

$$\frac{6}{2} = 0^{\circ}, 360^{\circ}$$
also check $6 = 180^{\circ}$ as a solu.
$$2(0) -1 + 1 \qquad 0 + 180^{\circ}.$$

t=0,2

(5) (6) (i) grad. PQ,
$$m = \alpha(q^2 - p^2)$$

$$= \frac{q + p}{2}$$

$$\therefore Eqn. PQ:$$

$$y - ap^2 = \frac{p+q}{2}(x - 2ap)$$

/x=40y

c(20,30%) Q (20,9,09°

If
$$C(2a,3a)$$
 satisfies,
 $3a = \frac{1}{2}(p+q)2a - apq$
 $3a = ap + aq - apq$
 $i.e.pq = po + q - 3$ Q.E.D.

(ii)
$$M = \left(a\alpha(p+q), \alpha(p^2+q^2)\right)$$

= $\left(\alpha(p+q), \frac{\alpha}{2}(p^2+q^2)\right)$

from (i) pol +3 = po+q and po +q = (p+q) - 2pq (pq+3) -2pq.

:.
$$M = (\alpha(p_1+3), \frac{\alpha}{2}[(p_1+3)^2 - 2p_1])$$

= $(\alpha(p_1+3), \frac{\alpha}{2}(p_1+3)^2 - 2p_1)$ Q.E.D.

(iii) Since at M, then
$$y = \frac{a}{2} \left(\frac{x}{a} \right)^2 - \left(x - 3a \right)$$

 $x = a(pq + 3)$

$$pq + 3 = \frac{x^2}{2a} - x + 3a.$$

$$2ay = x^2 - 2ax + 6a^2$$

$$pq = \frac{x}{a} - 3$$

$$x^2 - 2ax = 2ay - 6a^2$$

(i) (a)
$$P(BB) = \frac{7}{10} \times \frac{2}{10} = \frac{7}{50}$$

(B)
$$P(B,G) + P(G,B) = \frac{7}{10} \times \frac{8}{10} + \frac{3}{10} \times \frac{2}{10}$$

$$= \frac{56 + 6}{100} = \frac{31}{50}$$

(ii) (i)
$$P(x, 88) + P(Y, 88) = \frac{1}{2} \times \frac{7}{10} \times \frac{6}{9} + \frac{1}{2} \times \frac{7}{10} \times \frac{9}{9}$$

$$= \frac{42 + 2}{180} = \frac{11}{45}$$

$$(\beta) P(x,BG) + P(x,GB) + P(y,GG) + P(y,GB)$$

$$= \frac{1}{2} \times \frac{7}{10} \times \frac{3}{9} + \frac{1}{2} \times \frac{3}{10} \times \frac{7}{9} + \frac{1}{2} \times \frac{2}{10} \times \frac{8}{10} + \frac{1}{2} \times \frac{1}{10} \times \frac{$$

When
$$\theta = \frac{\pi}{6}$$
,

 $P = \times Z + 7Z + \times 7$
 $= y + y + ano + y and \theta$
 $= y(1 + tano + and \theta) = 20$

(ii) y=10, do = 02

 $\frac{dP}{dt} = \frac{dP}{d\phi} \times \frac{d\phi}{dt}$

dP = 10(secto + seco ta

$$\frac{Q.7}{36km/hr} \quad \frac{\dot{y} = -10}{\dot{y} = -10t + c}, \\ \dot{y} = -10t + c, \\ \dot{y} = -10t$$

$$y = -5t^{2} + c_{3}$$

 $t = 0$, $y = 200$, $c_{3} = 200$
 $y = -5t^{2} + 200$

(ii) When
$$t=a\sqrt{10}$$

 $\dot{y} = -20\sqrt{10}$, $\dot{x} = 10$.
 $\dot{y} = -20\sqrt{10}$, $\dot{x} = 10$.
 \dot{x}
 $w = 10\sqrt{41}$
 $= 64.03 \text{ m/sec}$

tan
$$d = \begin{vmatrix} ij \\ i \end{vmatrix}$$
 for a cute L

$$= \frac{20\sqrt{10}}{10}$$

$$= 2\sqrt{10}$$

$$= 2\sqrt{10}$$

$$= 2\sqrt{10}$$

$$= 2\sqrt{10}$$

(iii) Speed = 20 m/sec.
:. ij = -2050,
$$x = 20$$

tan $d = \sqrt{10}$
 $d = 72^{\circ}27'$

(8) (a)
$$a = (4x-2x^3) \text{ m/s}^2$$

when $t=0, v=0, x=2$.

(i)
$$a = \frac{d}{dx} \left(\frac{1}{2} w^{2} \right) = 4x - 2x^{3}$$

 $\frac{1}{2} w^{2} = 2x^{2} - \frac{x^{4}}{2} + C$

when
$$x = 2, N = 0$$

i.e. $0 = 8 - 8 + c$
 $c = 0$

i.e. $N^2 = 4x^2 - x^4$

(i) (d) For
$$w=0$$
, $0=4x^2-x^2$
 $=x^2(4-x^2)$
i.e. $x=0$, ± 2
Anci -tarto at $x=2$, next comes to rest at $x=0$

1.2.
$$2e^{2x} - 5e^{x} = 0$$

 $e^{x}(2e^{x} - 5) = 0$
 $e^{x} = 0$, S_{2}

:. At B,
$$x = \ln 5/2$$
, $y = \frac{25}{4} - 5.\frac{5}{2} + 4$

$$= -9/4$$
i.e. $5(\ln 5/2, -\frac{9}{4})$

x = 3e2x - 15ex + 12 let f(x)=3e2x-15ex+12-2. $3e^{2x}-15e^{x}+12-x=0$ 6 (1.5) = 3e3-15e1.5+12-1.5 8 (x) = 6e2x-15ex-1 8 (1.5) = 6e3-15e1.5-1

Approx. to x = 1.5 - 1(1.5)